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I. Overview  

 

A. Introduction 

The concept of testing genotype frequencies for fit to Hardy-Weinberg proportions (HWP) is 

simple and straightforward, and the usual first step in data analyses. Observed deviations from 

HWP can tell us a lot about population and patient samples (non-random mating, admixture), the 

accuracy of the genotyping, and selection. Included in the broad topic of selection is differential 

risk to disease, which in patients can manifest in overall genotype-level deviations from HWP, 

deviations for individual or specific sets of genotypes, or for overall heterozygosity.  

 As with all data analyses, we encourage manual inspection and subsequent manipulation 

of the data by the researcher following overall and individual genotype-level analyses of the 

data. This can lead to important insights, and is currently the only way to optimize analyses. 

Using researcher based knowledge of the disease, the genetic system under study, the typing 

methods employed, the population sampled, and the results of association studies, analyses can 

be refined to target specific sets of alleles or haplotypes, and their genotypes, with respect to 

HWP. 

 Remaining research issues with testing fit to HWP involve the statistical power of 

different test statistics with respect to alternative hypotheses. Note that we do not consider all 

possible test statistics in our discussions below. Also, for highly polymorphic genes, in terms of 

the biological relevance of the tests, further research is needed on how best to handle rare alleles 

and genotypes in the analyses. While no computer software package at this time contains all the 

tests we outline below, we list in Section I.I three websites that together cover the spectrum of 

these tests. 

 Note that no references are given in this section; a complete listing of references is given 

in each detailed section following this overview of HWP and testing thereof. 

 

B. Hardy-Weinberg proportions (HWP) 

A population is said to be at Hardy-Weinberg equilibrium (HWE) for a particular locus (gene) 

when the observed genotype frequencies are not statistically different from the frequencies 

determined by the appropriate products of its allele frequencies; these expected genotype 

frequencies are termed Hardy-Weinberg proportions (HWP). The most familiar format considers 

a locus denoted A, with two distinct alleles denoted A1 and A2, with respective allele frequencies 

p1 and p2 (p1 + p2 = 1). The HWP in this case are:  

A1A1: p1
2
,  A1A2: 2p1p2,  A2A2: p2

2
.   

For a locus with k distinct alleles and allele frequencies pi (  pi = 1), the expected HWP are:  

 pi
2
 for homozygotes (AiAi), and 2pipj for heterozygotes (AiAj), where i j , and i, j = 1, 2, ..., k. 

These expectations are derived from Mendel's first law of independent segregation of the two 

parental alleles when applied to population level variation. 

 Note that one must be able to distinguish all heterozygous and homozygous individuals, 

i.e., the test cannot be applied to traits with a recessive or dominant mode of inheritance; instead, 

the trait must show codominance or incomplete dominance. With molecular typing, e.g., of the 
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highly polymorphic HLA loci, single nucleotide polymorphisms (SNPs), and microsatellite 

(MSAT) loci, traits are codominant, unless typing errors obscure the true genotype. 

 The two-allele example above is usually described in terms of alleles A and a, and 

genotypes AA, Aa, and aa; the notation A1 and A2 is used here instead since the use of upper and 

lower case letters is traditionally used to designate dominant versus recessive alleles 

respectively. Further, while the more familiar notation denotes the allele frequencies by p and q 

(p + q = 1), we use the notation p1 and p2 as it readily extends to multiple alleles. 

 

C. Testing for fit to HWP and factors causing deviations from HWP 

In a test of HWE (i.e., fit to HWP allowing for random sampling effects), allele frequencies are 

estimated from the observed genotype counts and then the expected genotype counts under HWP 

are estimated from these allele frequencies. The observed and expected genotype counts are then 

compared using an appropriate statistical test. Significant deviation of genotype counts from 

HWP can be due to a number of factors, including sampling of admixed, stratified, or some other 

form of blended populations, inbreeding or other forms of non-random mating, genotyping 

errors, and selection. 

 Statistical tests to detect significant deviations from HWP have low power, and for most 

genetic markers in relatively well-defined populations significant deviation from HWE is not 

common. When significant deviations from HWP are seen, genotyping errors or potential 

population stratification are the first consideration rather than the operation of natural selection. 

Testing fit to HWP is a crucial first step in quality control (QC) in verifying the integrity of 

genotype data, especially for highly polymorphic genotype data. 

 The largest body of evidence for selection via deviations from HWP comes from disease 

studies; deviations from HWP may be observed for a causative genetic variant, e.g., HLA genes, 

as well as all markers in linkage disequilibrium (LD) with the causative variant. Thus, a marker 

should not be removed from an analysis due to lack of fit to HWP in patients unless there is also 

a corresponding lack of fit in controls along with further investigation of the individual 

genotypes contributing to an overall deviation from HWP.  

 

D. Overall genotype-level tests of HWP: asymptotic, exact, and approximation methods  

Tests of the significance of overall genotype-level deviations from HWP combine information 

across all genotypes at a locus. Different methods can be categorized into three main groups:  

asymptotic (standard) tests, e.g., the Chi-square goodness-of-fit test, 

exact (complete enumeration - the ―gold standard‖) tests, and  

approximation (resampling) tests, e.g., Monte Carlo (MC), Markov Chain Monte Carlo (MCMC).  

 The Chi-square test historically was the standard approach for testing fit to HWP at the 

overall genotype-level, while more recently the MC and MCMC resampling tests have been 

used. It is well documented that asymptotic tests can sometimes lead to false acceptance or 

rejection of the null hypothesis when asymptotic distributional assumptions for statistics are not 

met. This issue arises in particular when the sample size is small and/or the expected genotype 

counts are small or close to zero (i.e., there are sparse cells).  
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 Tables of all possible genotypes for highly polymorphic loci in particular may have many 

sparse cells. Notably, the classical HLA class I A, B, and C and the class II DRB1, DQA1, 

DQB1, DPA1, and DPB1 loci are extremely polymorphic. Some of these loci have more than 

1,000 described alleles; and it is not uncommon to observe 30 to 40 or more distinct alleles at a 

given locus in many populations worldwide, leading to many sparse cells. In these cases, many 

alleles must be lumped together in order to apply the Chi-square test. Alternatively, resampling 

MC or MCMC tests can be applied. 

 An exact (complete enumeration) algorithm has recently been developed for an arbitrary 

number of distinct alleles (k) and an arbitrary sample size (n), and we refer to this as the ―gold 

standard.‖ Its applicability to large samples with large numbers of alleles is currently limited by 

the available computer resources. The resampling MC and MCMC tests perform very favorably 

when compared to the exact test, and always outperform the asymptotic Chi-square test. It has 

been shown that in a few cases the MCMC method may fail to approximate to the exact p-value, 

hence in cases where the exact test cannot be performed due to large sample size and numbers of 

alleles the MC test is in general preferred. 

  

E. Individual genotype-level tests of HWP  

Identifying individual genotype deviations from HWP is also of interest for both QC of the data 

and in population and disease studies. For example, if a particular genotype has been typed 

incorrectly, it may show significant deviations from HWP, either excess or deficiency, in 

laboratories using that protocol. Also, some specific genotypes may be subject to selection at the 

population level, and study of individual genotype deviations from HWP may provide increased 

power to detect that selection. With admixture, the genotypes with the greatest differences in 

allele frequencies between the contributing populations are expected to show more deviation 

from HWP. In disease studies, specific genotypes may show significant differential risk, which 

may be detected via deviations from HWP. For example, in patients with type 1 diabetes (T1D) 

there is an excess of HLA DR3/DR4 individuals over the respective homozygotes (DR3 and 

DR4 as used here are abbreviations for the well-known HLA DRB1-DQB1 haplotypes 

associated with T1D). 

The relative magnitude of contributions to significant deviation from HWP for each 

individual genotype was previously assessed by considering the p-value for the asymptotic 1 

degree of freedom (df) Chi-square test for individual genotypes; however, such a test is always 

invalid (and tends to be conservative) as the individual contributions are not independent. 

Appropriate asymptotic tests for individual heterozygote and homozygote cases have been 

developed.  

 Individual genotype-level tests have recently been incorporated into the resampling MC 

and MCMC overall genotype-level tests, as well as the exact test. We have also shown that the 

p-value for individual genotype-level testing can always be calculated via an exact test applied to 

the appropriate 2x2 genotype table for homozygotes (alleles Ai and Ax, where x denotes all non-

Ai alleles, and genotypes AiAi, AiAx, AxAx), and for heterozygotes (and also for the respective 

homozygotes) the appropriate 3x3 table (alleles Ai, Aj, and Ay, where y denotes all non-Ai, non-Aj 

alleles, and genotypes AiAi, AiAj, AjAj, AiAy, AjAy, AyAy).   

 

F. Overall heterozygote excess/deficiency, and all heterozygotes for a specific allele 
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As well as individual genotype deviations from HWP, specific sets of genotypes may overall 

show deviations from HWP. This may occur in MSAT genotyping as a result of preferential 

amplification or allelic dropout (alleles that cannot be distinguished from background noise). 

Similarly, with null MSAT alleles (alleles that cannot be amplified due to sequence variation 

under PCR primers), there could be a significant excess of some homozygotes. Conversely, 

stuttering with MSAT typing can result in homozygotes being scored as heterozygotes. SNP data 

is also subject to deviations from HWP due to the typing procedure, and SNP data showing lack 

of fit to HWP are routinely removed from analyses; the cause is usually not examined, although 

it is often attributable to allelic dropout due to sequence variation in the primer region.  

 HLA genotyping depends on the hybridization of PCR primers, and DNA probes in some 

cases, which may fail if novel sequence variants are present under the primer or probe. In the 

case of a novel variant under a primer, an allele can go undetected, resulting in an excess of 

homozygous genotypes. In the case of a novel variant under a probe, both alleles in a genotype 

may be incorrectly assigned (resulting in an increased number of rare alleles, and therefore an 

increase in sparse cells).  

 Given the central role HLA molecules play in disease association, heterozygosity per se 

may confer a selective advantage, as seen with progression to AIDS. It is thus of interest to study 

deviations from HWP for all homozygotes, all heterozygotes, as well as heterozygotes for each 

specific allele, e.g., A1Ax, where x = 2, 3, .., k. In the latter case, these values are obtained from 

the appropriate 2x2 genotype table discussed above. Selection at the population level, and 

disease risk, may act at any of these levels. 

 As mentioned above, we do not cover all possible tests of HWP in our discussion below. 

Some of these additional tests may be more powerful depending on the alternative hypothesis 

being considered, for example, admixture and other forms of population stratification, as well as 

inbreeding, which lead to an expected heterozygote deficiency. 

 

G. Rare alleles and genotype classes  

As noted above, individual genotype-level p-values can always be calculated using an exact test. 

However, when the expected values are sufficiently small, the test may not be biologically 

meaningful, leading to a potential for over-interpretation of associated  p-values. This results 

from the fact that genotype and allele counts are restricted to integer values, while expected 

values for genotypes involving rare alleles may be much less than 1. Comparing, for example, an 

observed count of 1 to an expected of 0.10 is in general not appropriate. Hence, we propose an 

arbitrary cut-off so that p-values for individual genotypes will only be reported when the 

expected genotype count under HWP is >2. This is strictly speaking a rule of thumb and the cut-

off used by different researchers may vary. Our recommendation of using a cut-off of two may 

be revised upon further numerical research. Further, given that researchers have noted cases with 

low expected but quite a large observed genotype count, and that this may serve as a signal of 

admixture, researchers may wish to note such observations. 

  

H. Application to population and patient data sets  

As emphasized above, genotyping errors are always the first possibility to consider in quality 

control (QC) of HLA, and other, data. While some authors argue against using lack of fit to 

HWP to identify genotyping errors for some marker types, nevertheless with HLA data in 
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population studies it has been validated as useful for that purpose, although probably with low 

power. Deviations from HWP may be due to issues with a primer or probe. Non-random 

sampling of individuals, for example from bone marrow transplantation registries, can also lead 

to significant deviations from HWP. Admixture is usually identified by the presence of alleles or 

haplotypes which are recognized as probably coming from a different population; excluding 

potentially admixed individuals may improve the fit to HWP. Evidence for selection based on 

HWP has been found in a number of HLA studies. 

 For disease studies, deviations from HWP can indicate the presence of a disease gene. 

Further, the form of deviations can indicate specific genotype effects on disease risk. Fit to HWP 

with a patient sample is expected only for a marker in LD with a strictly recessive disease model.  

 

 I. Software available for tests of HWP  

We give three websites that together cover the spectrum of tests we discuss (below we refer to 

these as PyPop, Cactus, and HW-QUICKCHECK respectively): 

(1) www.pypop.org and www.ImmPort.org (Python for Population Genomics – PyPop, current 

release version 0.7.0.) (Lancaster et al. 2003, 2007a, 2007b; Lancaster 2006) 

 PyPop is affiliated with ImmPort.org, the Immunology Database and Analysis Portal. The 

ImmPort system provides advanced information technology support in the production, 

analysis, archiving, and exchange of scientific data.   

 (2) www.cactus-project.org/hardy-weinberg (Maldonado Torres 2009) 

 (3) www.montana.edu/kalinowski/ (HW-QUICKCHECK) (Kalinowski 2006). 

Many other websites also cover one or more of the tests listed below. 

 

Overall genotype-level tests of HWP 

asymptotic: the Chi-square goodness-of-fit test - PyPop  

 The default setting for the Chi-square test appropriately lumps all genotype classes with 

Ei < 5; in cases with large numbers of rare alleles there may be no df left for statistical 

testing of the data. 

exact: the complete enumeration algorithm for the general case - Cactus, PyPop in a later 

release 

 This algorithm applies to any number of alleles (k) and sample size (n), its applicability to 

large samples with large numbers of alleles is currently limited by the available computer 

resources. 

approximation: resampling Monte Carlo (MC) and Monte Carlo Markov Chain (MCMC): 

 MC - PyPop, MCMC - PyPop and Cactus 

 The MC test in PyPop is based on the code of the method described in Guo and 

Thompson (1992). The MCMC test in PyPop is based on a modified version of the code 

from Guo and Thompson (1992) that allows for large numbers of distinct alleles. In both 

cases (MC and MCMC) the overall genotype-level p-value is approximated by running 

the algorithm for a fixed number of steps and recording the number of randomly 

generated samples that have a conditional probability less than or equal to that from the 

http://www.cactus-project.org/hardy-weinberg
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observed sample. The p-value is then computed by dividing the number of such samples 

found by the total number of samples generated. In the MCMC case, the algorithm is run 

for B dememorisation steps (―burn-in‖) before statistics are collected.  

Individual genotype-level tests of HWP  

asymptotic: the Chi-square goodness-of-fit 1 df test - PyPop, valid asymptotic tests (Chen 

statistics) - PyPop in a later release 

 The Chi-square goodness-of-fit 1 df test is always invalid and conservative, and is useful 

only as a relative measure. Appropriate asymptotic test statistics for heterozygotes and 

homozygotes are available (Section I.E). 

exact: using the full set and appropriate 3x3 subsets - Cactus, PyPop in a later release 

 For a sample with k observed alleles, the exact test for individual heterozygotes and 

homozygotes can always be calculated via the reduction of the observed genotype 

distribution into a set of k(k – 1) / 2 tables of the appropriate 3x3 genotype sub 

distributions, even when computing power limits analysis of the full distribution. 

approximation: resampling MC and MCMC tests - PyPop, HW-QUICKCHECK 

 Recently, individual genotype-level tests have been added to the MC and MCMC tests in 

PyPop, however, the suggested cut-off for rare genotypes has not yet been implemented.  

Overall heterozygote excess/deficiency 

exact: using the full set - Cactus and PyPop in later releases  

approximation: resampling MC test - HW-QUICKCHECK, PyPop in a later release 

All heterozygotes for a specific allele 

exact: using the full set, and the k subsets of 2x2 tables - Cactus and PyPop in later releases  

approximation: resampling MC and MCMC tests - PyPop in a later release 

Rare alleles and genotype classes 

 Later releases of both Cactus and PyPop will include cut-offs for rare alleles and 

genotypes so that the p-values will be indicated with an asterisk when the test is not 

biologically reasonable.    

 

II. Hardy-Weinberg proportions (HWP) 

 

A. Introduction 

Consider the three examples of population level genotype frequencies shown in Table II.1: the 

MN gene encodes blood group antigens; the 32 variant of the CCR5 gene protects against 

progression to AIDS; and cystic fibrosis which is a recessive trait (cc individuals are affected and 

Cc individuals are carriers: these heterozygotes can be detected using molecular typing 

methods).  

 One might ask: Why are these particular genotype frequencies observed? Is there some 

relationship between allele frequencies and the genotype frequencies? And why are the 

heterozygote frequencies so much larger than the homozygous frequencies for the 32/ 32 and 
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cc genotypes? These are explained by the fact that these three cases have observed genotype 

counts very close to those expected under HWP.  

 

Table II.1: Comparison of observed and expected genotype counts under HWP* 

 

(1) MN blood group system in an Egyptian population: p1 = 0.5225, p2 = 0.4775 

 Genotypes: MM MN NN 

 Observed numbers 278 489 233 Total: 1,000 

 Expected HWP 273 499 228 Total: 1,000 

(2) CCR5 32 variant in a French population: p1 = 0.89, p2 = 0.11 

 Genotypes: A/A A/ 32 32/ 32 

 Observed numbers 795 190 15 Total: 1,000 

 Expected HWP 792.1 195.8 12.1 Total: 1,000 

(3) Cystic fibrosis in a European population: p1 = 0.9796, p2 = 0.0204 

 Genotypes: CC Cc cc 

 Observed numbers 9,596 400 4 Total: 10,000 

 Expected HWP 9,596.2 399.6 4.2 Total: 10,000 

 

* The data are modified from real examples to give total sample sizes that are easy to visualize 

and use in calculations. 

 

 In each of these three examples, the genotype frequencies are very close to (and in fact 

not statistically different from) those expected under HWP. To estimate the HWP in each case, 

first the allele frequencies, denoted p1 and p2 (p1 + p2 = 1), are estimated by the method of gene 

(allele) counting. The HWP expectations are then determined by the appropriate products of the 

allele frequencies: 

 A1A1: p1
2
,  A1A2: 2p1p2,  A2A2: p2

2
; 

and the expected genotype counts are obtained by multiplying the HWP by the sample size (n). 

(See Appendix A for the method of gene (allele) counting and the derivation of HWP). Note that 

the trait under study must show codominance or incomplete dominance so that all heterozygote 

and homozygote individuals can be distinguished. Observed genotype counts are then compared 

to those expected under HWP using an appropriate statistical test (discussed later). 

 The extension to multiple alleles is straightforward, for a locus with k alleles and allele 

frequencies pi, the expected HWP are: 

AiAi : pi
2
 for homozygotes, AiAj : 2pipj- for heterozygotes, where i j , and i, j  = 1, 2, ..., k. 

 For a 2 allele X-linked trait (with obvious extensions for multiple alleles), the expected 

HWP are: 

females: A1A1 : p1
2
, A1A2 : 2p1p2, A2A2 : p2

2
, males: A1 : p1, A2 : p2, 

and statistical testing for HWP can only be carried out in females (see Appendix A). 
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B. Assumptions in calculation of HWP   

The effect of Mendelian segregation on the genetic structure of a population is the central 

consideration for the calculation of HWP. Because we want to consider the effect of this factor 

acting in isolation from all other possible factors, we assume: 

 (a) random mating, e.g., no inbreeding 

 (b) migration, admixture, etc. rates and mutation rates are negligible,  

 (c) no selection (including disease risk in patient samples), 

 (d) segregation according to Mendelian rules, and  

 (e) a very large population (in theory, an infinitely large population). 

These five assumptions are known to those familiar with classical population genetics. However, 

given the variety of molecular typing methods currently in use, and the possibility of error with 

all of them, we add here a sixth assumption: 

 (f) no genotyping errors.   

 Students often asked why such stringent criteria must be considered, given that no real 

population will exactly satisfy all of them. This question is often followed by the suggestion that 

modern computers might be employed to consider all the variables simultaneously. Nevertheless, 

a very stringent and simplistic model is used in order to understand the effect of Mendelian 

segregation on short and long-term population effects, independent of other evolutionary 

parameters. At the same time, the power of HWP tests is low; deviations from HWP will only be 

detected if the effect of any one of these factors is very large. For practical purposes, moderate 

individual violations of these assumptions do not cause significant deviations from HWP at 

many loci. 

 As mentioned above, when significant deviations from HWP are seen, genotyping errors 

are the first consideration. Note however that there is debate about the exclusion or not of data 

due to lack of fit to HWP for certain types of genetic polymorphisms (see e.g., Zou and Donner 

2006, Teo et al. 2007).  Significant deviation from HWP has been observed due to a number of 

factors, including sampling of admixed, stratified, or some other form of blended populations, 

inbreeding or other non-random mating (see e.g., Bourgain et al. 2004), and selection (see e.g., 

Hedrick 2003, Meyer and Thomson 2001, Section IX, and Appendix C). 

 Finally, it should be noted that the assumption of an infinite population allows for no 

sampling variance at the population level. This is equivalent to assuming one gets 50% heads in 

an infinite series of coin tosses. The statistical tests described below however account for the fact 

that the sample size is finite.  

 

C. Relationship between HWP and allele frequencies 

In Table II.2, HWP are given for some representative values of the allele frequency p1 of allele 

A1, and hence p2 of allele A2 (p1 + p2 = 1). These show that for relatively rare alleles, the 

frequency of heterozygotes is much larger than for the homozygote (see examples 2 (the 32 

variant of the CCR5 gene) and 3 (cystic fibrosis) in Table II.1). 
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Table II.2: HWP for a range of allele frequencies and the gene diversity (H) index 

 

 A1 A2  A1A1  A1A2  A2A2 

 p1 p2  p1
2
  2p1p2  p2

2

 ______________________________________________________________________                                                                                          

 .01 .99  .0001  .0198  .9801 

 .05 .95  .0125  .095  .9025 

 .1 .9  .01  .18  .81 

 .2 .8  .04  .32  .64 

 .3 .7  .09  .42  .49 

 .4 .6  .16  .48  .36 

 .5 .5  .25  .50  .25 

 

 Note from Table II.2 that for a two-allele system, the maximum heterozygosity under 

HWP occurs when the two alleles have equal frequency of 1/2. For a given set of allele 

frequencies, the expected proportion of heterozygotes under HWP is the probability that two 

randomly chosen allele copies will be different, and is referred to as the gene diversity (H) index. 

In summarizing the amount of genetic variation at a polymorphic locus, we usually give the 

number of observed distinct alleles (k), the gene diversity index (H), and the sample size (n). 

Note that for multiple alleles, the maximum possible gene diversity index for a given number of 

alleles (k) observed in a sample, occurs when these alleles all have equal frequency of 1/k, in 

which case H = (k-1)/k = 1 - 1/k, and the observed homozygosity under HWP (F) = 1/k. 

 For recessive traits, a test of fit to HWP can not be carried out. However, we can use the 

fact that most genes show fit to HWP, to estimate the allele frequency, and use this to estimate 

the frequency of heterozygotes (carriers) of the recessive allele (see Appendix A).  

 

III. Asymptotic (standard) Chi-square overall test of HWP 

 

The basis of the asymptotic (standard) goodness-of-fit Chi-square test of HWP is to calculate a 

standardized measure of deviation from HWP for each individual genotype and then add together 

these individual contributions ,(O-E)2/E where O is the observed genotype count and E is the 

expected count under HWP.The sum of these individual values gives the Chi-square test statistic 

value, with a specified degrees of freedom (df); and the relevant p-value under the null 

hypothesis is then determined. It is usual to require E > 5 for all genotypes, which may 

necessitate appropriate lumping of some alleles or genotypes. (See Appendix B for details on 

calculating the Chi-square test statistic, including calculation of df and lumping of classes, and 

accepting or rejecting the null hypothesis and p-values in the latter case.) 

 It is well documented that the asymptotic tests can sometimes lead to false acceptance or 

rejection of the null hypothesis, in particular when the sample size is small and/or the expected 

genotype frequencies are small or close to zero (Cochran 1954; Emigh, 1980; Louis and 

Dempster 1987; Guo and Thompson 1992; Wigginton et al. 2005). Other proposed asymptotic 

tests include the Freeman-Tukey test (Freeman et al. 1950), the conditional Chi-square test (Li 
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1955), the Mantel-Li test (Mantel and Li 1974), the likelihood-ratio test (Elston and Forthofer 

1977; Hernandez and Weir 1989), and the Kullback-Leibler test (Ebrahimi and Bilgili 2007). 

Different corrections for small sample sizes have been proposed (Yates 1934, 1963; Emigh 1980; 

Elston and Forthofer 1977; Smith 1986); however, they do not always greatly improve the results 

from the traditional asymptotic tests (Emigh 1980).  
 

IV. Exact (complete enumeration) overall tests of HWP 

 

Levene (1949) described the conditional sampling distribution, which gives the exact 

probabilities for all possible samples of genotypes where the sample size (n) and the allele 

frequencies pi, i  = 1, 2, ..., k, are held constant, and z is the total number of heterozygotes 

observed in the sample.  

 

Table IV.1 

 

 
 

 

 

        (eq. IV.1) 

 

 

 An exact test for HWE based on Levene’s conditional sampling distribution was 

developed by Louis and Dempster (1987). Their test utilized an algorithm for generating all 

possible tables of genotypes (based on observed allele counts) when the sample size and allele 

frequencies are held constant in accordance with the exact distribution. Louis and Dempster 

published individual algorithms for samples with two, three, and four distinct alleles (k =2, 3, 

and 4), and they indicated how the algorithms could be appropriately extended for samples with 

a higher number of distinct alleles. The p-value is given by the cumulative conditional 

probability of obtaining a table of genotypes (with sample size, number of alleles, and allele 

frequencies equal to the observed sample) with a conditional probability less than or equal to that 

of the genotypes in the observed sample (Levene 1949; Emigh 1980). This test provides the 

exact p-value for the observed sample and it does not require input parameters that may affect 

the result (c.f., the MCMC method, below). However, the number of possible tables of genotypes 

grows factorially as either the sample size or the number of distinct alleles (k) increases, reducing 
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the feasibility of this test when n and k are large.  

 Maldonado Torres (2009) recently developed a complete enumeration algorithm which 

efficiently generates all possible tables of genotypes for the exact distribution of Levene (1949) 

for a given number of distinct alleles (k) with allele frequencies (pi) and sample size (n). This 

algorithm is used to perform a true exact test. In practice, however, its applicability on large 

samples and/or samples with a large number of distinct alleles is currently limited by the 

available computational resources, in particular the processor’s speed. On a Pentium III class 

machine with 1 Gigabyte of system memory, a realistic upper limit was found to be around 100 

individuals and 12 alleles. Approaches to circumvent this problem are being investigated and 

they are mainly related to the intelligent generation of the subset of needed samples from the set 

of all possible samples. An implementation of this exact test is available as a standalone program 

at http://www.cactus-project.org/hardy-weinberg/ and will soon be available in the Hardy-

Weinberg module of PyPop. 

 

V. Approximation (resampling) MC and MCMC overall tests of HWP 

 

Approximation methods to complete enumeration of all possible samples of genotypes were 

developed for data sets with larger numbers of distinct alleles, where the asymptotic Chi-square 

test may be particularly problematic and exact tests were not possible. These methods generally 

use the Monte Carlo (MC) simulation method to approximate to the exact p-value and, therefore, 

represent an acceptable alternative to the exact test. Guo and Thompson (1992) developed the 

first conventional MC test of HWP based on Levene’s conditional sampling distribution. 

Alternative tests to the conventional MC test have been proposed (Guo and Thompson 1992; 

Yuan and Bonney 2003; Huber et al. 2006). Guo and Thompson (1992) also proposed a Monte 

Carlo test that uses a finite and irreducible Markov Chain (MCMC) (Metropolis et al. 1953) to 

randomly generate the tables of genotypes. In each of these MC-based tests, the p-value is given 

by the fraction of randomly generated tables of genotypes with a conditional probability less than 

or equal to the conditional probability of the observed sample. These approximation tests are 

often erroneously referred to as ―exact‖ tests; however, since they do not perform a true 

exhaustive search for all possible samples we refer to them as approximation or resampling tests.  

 With the exact test as the ―gold standard‖ it was possible to compare not only asymptotic 

tests to resampling MC and MCMC tests as had been done previously (e.g., Emigh 1980; Louis 

and Dempster 1987; Guo and Thompson 1992; Chen and Thomson 1999; Chen et al. 2005; 

Wigginton et al. 2005), but also the resampling tests to the exact test results (within the scope of 

the size limitations imposed by the available computational resources). Both the MC and MCMC 

perform very favorably when compared to the exact test, and always outperform the asymptotic 

Chi-square test (Lancaster 2006, Maldonado-Torres et al. 2010). Either can be used in place of 

full enumeration when it is computationally more practical. Guo and Thompson (1992) reported 

that the MCMC algorithm is faster than the MC when the sample size is moderate or large; we 

have also found this to be the case (Lancaster 2006).  

 The MCMC method may fail to approximate to the exact p-value in a few cases 

(Lancaster 2006, Maldonado-Torres et al. 2010). In particular, some example tables of genotypes 

for which the constituent allele frequencies were skewed presented some difficulties for the 

MCMC method. A skewed allele frequency distribution may yield a low number of possible 

tables of genotypes. The effect of skewed allele frequencies may be exacerbated when combined 
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with a small sample size. In terms of the MCMC, a low number of possible tables of genotypes 

can result in the number of steps in the Markov chain (equal to the number of tables of genotypes 

randomly generated) being substantially larger than the number of all possible tables of 

genotypes. In certain cases, the latter makes the MCMC method prone to generating, or to 

sampling, a set of tables of genotypes too many times, affecting the approximation to the exact p-

value.  

 Additionally, even though a skewed allele frequency distribution combined with a large 

sample size may yield a large number of possible tables, the number of observed distinct alleles 

and the presence of rare alleles can affect the performance of the MCMC. This is the result of the 

lack of possible switches (changes from one randomly generated table to the next) due to sparse 

cells (genotype counts of 0) that can cause the MCMC to get stuck in a state where it cannot 

move forward or where the choices are limited, therefore, affecting the approximation of the 

exact p-value. 

 Even though these scenarios may rarely happen in some genetic systems, they may be 

more common in others. Therefore, it appears more prudent in estimation of overall genotype-

level p-values to use the MC algorithm in preference to the MCMC in all cases. The extra 

computational time required to use the MC over the MCMC is almost negligible with the speeds 

available in today's computational resources as compared to those available in 1992. Obviously, 

the exact test (complete enumeration) is the preferred method when computationally feasible. 

 

VI. Individual genotype tests of HWP 

 

A. Introduction 

In addition to measuring overall genotype-level deviations from HWP, we are interested in 

identifying individual genotype-level deviations both for QC of the data, as well as for 

population and disease studies. The overall test may not always be significant even when 

individual genotype-level deviations are significant, and vice-versa. Note that the individual 

genotype testing approach is most useful if one has an a priori hypothesis about one or more 

genotypes in the sample, regarding their excess or deficit from HWP. Appropriate methods to 

statistically account for multiple comparisons are necessary if the methods below are applied to a 

large number of (or all) individual genotypes. By applying any of the methods discussed below 

to all individual genotypes, we face the problem of multiple tests, no matter whether we use 

asymptotic, exact, or resampling approaches. Given that genotype counts (Oi) are restricted to 

integer values,but the expected counts (Ei) can take small fractional values, conclusions made 

using these tests must be drawn carefully (see Section VIII below) to ensure that they reflect 

biological reality. 

 An incorrectly typed genotype may appear more or less often than expected by chance in 

population samples typed in a particular laboratory or using a particular protocol. For example, 

in the case of MSAT genotyping of heterozygous individuals, the shorter fragment size generally 

amplifies better than the larger fragment (in what is known as preferential amplification). In 

extreme cases, the longer allele may not be distinguished from background noise (resulting in 

allelic dropout), which leads to an over-representation of homozygotes for the shorter allele 

(Demers et al. 1995; Chen et al. 2005; Kalinowski 2006). Similarly, with null MSAT alleles 

(which are not detected as a result of variation under a PCR primer), there should be an excess of 
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all homozygotes and deficiency of all heterozygotes (Kalinowski 2006). Conversely, stuttering 

with MSAT typing can result in homozygotes being scored as heterozygotes. SNP data are also 

subject to typing-derived deviations from HWP, and SNP data showing lack of fit to HWP are 

routinely removed from analyses with no subsequent examination. For more details on 

genotyping errors and their causes see the review by Pompanon et al. (2005). 

 HLA genotyping depends on the hybridization of PCR primers, and in some cases of 

DNA probes, which can fail if novel sequence variants are present in the target sequence. When 

novel variants fall under primer targets, the allele in question can go unamplified, and therefore 

undetected, resulting in an excess of homozgous genotypes. When DNA probes are used, the 

identity of the alleles in a genotype is inferred from the pattern of probe hybridization; if a probe 

fails to hybridize as a result of novel sequence variation in one allele, one or both of the alleles in 

the genotype may be incorrectly identified. In cases where both alleles are incorrectly identified, 

the allele lacking novel sequence variation in that genotype will be correctly identified in other 

genotypes, so that novel sequences under DNA probes can result in an increased number of rare 

alleles, with the potential for a large number of sparse cells. 

 

 B. Asymptotic individual genotype tests of HWP  

The relative magnitude of contributions to significant deviation from HWP for each individual 

genotype has been  assessed by assuming that the contribution of each individual genotype to the 

chi-square statistic is a separate 1 d.f. statistic. However, this assumption is incorrect and the test 

is always invalid (and tends to be conservative) because the individual contributions are not 

independent. Additionally, as mentioned above, formal testing would require correction for 

multiple comparisons. However, quantiles from a Chi-square distribution with 1 df can provide 

insight as to the potential significance of the individual heterozygotes or homozygotes.  

 Chen and Thomson (1999) and Chen et al. (2005) developed an appropriate asymptotic 

test statistics for individual genotypes, heterozygous and homozygous cases respectively. They 

used a difference statistic (O - E) normalized by the correct variance of this individual genotype 

statistic under the null hypothesis of fit to HWP (see below). The corrected variance addresses a 

problem with the individual heterozygote genotype test of Hernandez and Weir (1989), which 

can generate negative variance values.  

 

 For an individual heterozygous genotype, the sample disequilibrium coefficient is: 

1

2
ik i k ik

d p p p , where , 1, 2, ...,
i

p i m  are the sample allele frequencies. Chen and Thomson 

(1999) showed that the correct variance for 
ik

d is given by  
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In this case, 
0

: 0
ik

H D  is tested using the test statistic
1 . .

2

2
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ii

ii

d

var d
. 

 

 

 C. Exact and approximation individual genotype tests of HWP  

Individual genotype-level tests have recently been added to the MC and MCMC tests in PyPop, 

and are also available in the exact test. We have demonstrated (Maldonado Torres 2009, 

Maldonado-Torres et al. 2010) that the individual genotype-level exact test can always be 

calculated via the reduction of the observed genotype distribution into a set of k(k – 1) / 2 tables 

of the appropriate 3x3 genotype sub distributions. Note that this variant of the individual exact 

test can always be applied even if the overall exact test cannot be performed due to computer 

limitations.  

 A p-value is calculated for each individual genotype by defining an appropriate test 

statistic for the difference between observed and expected genotype counts. As in the overall test, 

the fraction of tables of genotypes in which this test statistic is less than or equal to the test 

statistic of the observed table of genotypes is computed for each genotype. Two test statistics are 

reported by PyPop: (1) the ―diff statistic‖ is based on the difference between observed and 

expected counts, while, (2) the ―Chen statistic‖ normalizes this difference based on the correct 

variance under the null hypothesis and gives the statistic for heterozygotes from Chen and 

Thomson (1999) and that for homozygotes from Chen et al. (2005).  

 

VII. Overall heterozygote excess/deficiency, and all heterozygotes for a specific allele 

 

In addition to individual genotype tests, tests of all homozygotes and all heterozygotes can be 

very useful for detecting genotyping errors during the QC of data (Kalinowski 2006). If for 

example null MSAT alleles are present in a sample, an MSAT allelic dropout has occurred, or a 

specific HLA allele was not amplified, there should be an excess of all homozygotes and 

corresponding deficiency of all heterozygotes; the opposite pattern would be observed in cases of 

MSAT stuttering, for example. The HW-QUICKCHECK program of Kalinowski (2006) 

performs tests of deviation from HWP using the MC approximation method for overall genotype 

level, individual genotype, and overall homozygosity and heterozygosity. These tests are 

assumed to be hypothesis-driven and hence report one-sided p-values.  

 It is of additional interest to consider all heterozygotes for a particular (common) allele 

(e.g. A1AX, where X denotes the combined set of all alleles excluding A1) both for QC of data, 

and for the detection of selection or differential relative disease risk. This test, using the k subsets 

of the appropriate 2x2 tables, along with an overall test of heterozygote excess/deficiency, will 

be incorporated in an upcoming version of PyPop. 

 

VIII. Rare alleles and genotype classes 

 

It is not uncommon for HLA datasets to include several alleles with counts of 1 or 2 (and other 

such small numbers) and therefore many genotypes will have counts of 0 in these cases. Further, 

expected values for genotypes with these alleles will all be very small. Should rare alleles all be 
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combined into one class for both overall genotype-level and individual genotype-level analyses? 

Another alternative would be to remove from analysis all individuals with a rare allele.  

 Why do we raise this issue? The pertinent problem with individual genotype-level 

analyses is that while all allele counts are integers, the expected counts for specific genotypes 

containing rare alleles may be very much less than 1; this is especially true for highly 

polymorphic genes, like the HLA genes. However, biological reality dictates that observed 

genotype counts must be integers, so that statistical tests carried out in cases with low expected 

genotype counts are rendered meaningless, leading to spurious results and erroneous 

interpretations. While a strict theoretical guideline is not feasible, we devote attention to this 

issue, with some suggestions for dealing with rare alleles.  

 A fictitious example that illustrates problems in testing individual genotype deviations 

from HWP is as follows: in a sample of size n = 100 individuals, suppose there are 26 distinct 

alleles observed,  

24 of which have a count of 8 (alleles A1 - A24, each with pi = 0.04),  

1 of which has a count of 7 (allele A25, with p25 =  0.035), and  

1 of which has a count of 1 (allele A26, with p26 =  0.005).  

The allele A26 must occur in a genotype with 1, and only 1, of the other 25 alleles, and under 

random mating will do so with probabilities 0.04/0.995 (= 0.0402) for each of alleles A1 - A24, 

and probability 0.035/0.995 (= 0.0352) for allele A25 (with correction to allow for the fact that no 

homozygous A26 individuals can occur). Thus, with a nominal p-value of 0.05, every observation 

is significantly different from random expectation (observed 1 and expected 0.0402 or 0.0352) 

Biologically of course this makes no sense.  

 Similarly, even if all alleles are not this rare, there may be problems. As another example 

consider a sample of size n = 100 individuals, with 13 distinct alleles observed,  

1 of which has a count of 100 (allele A1, with p1 =  0.5),  

1 of which has a count of 40 (allele A2, with p2 =  0.2),  

9 of which have a count of 6 (alleles A3 - A11, each with pi = 0.03),  

1 of which has a count of 5 (allele A12, with p12 =  0.025), and  

1 of which has a count of 1 (allele A13, with p13 =  0.005).  

Again, as above, allele A13 must occur with 1, and only 1, of the other alleles. If it occurs with 

one of the 10 alleles A3 - A12 it will show up as individually significant from random 

expectations, as above. However, this subset of alleles accounts for 30.2% of the possible 

genotypes that A13 can occur with. 

 Obviously this problem is not restricted to singleton alleles and heterozygotes thereof. 

There are many possible examples when the expected values are sufficiently small that the 

statistical test may not reflect biological reality. We have proposed an arbitrary cut-off (subject 

to change after further research) that p-values for individual genotypes with an expected 

genotype count under HWP that is <2 will be indicated with an asterisk, indicating that one must 

be very careful in not over interpreting the result. Given that researchers have noted cases with 

low expected but quite a large observed genotype count, and that this may serve as a signal of 

admixture, researchers may wish to note such observations.  
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  Further research is required to determine whether very rare alleles should be combined as 

a lumped category in overall genotype-level tests of HWP. While such combining of rare classes 

is required for the Chi-square test, it is not required for the resampling MC and MCMC methods 

and the exact complete-enumeration test, which made these more appealing. However, there is 

insufficient understanding at this time of the effect on power of lumping, or not lumping, rare 

alleles. Also, the biological interpretation of lumped alleles is less straightforward. An alternative 

also is to delete genotypes containing rare alleles from the analysis. We suggest that the data be 

analyzed, both for overall and individual genotype tests, using both the original data as well as 

data in which all rare alleles have been removed or combined (at least singletons, but possibly 

alleles with counts < 3. Also, one can perform a hierarchical set of analyses, first testing 

genotypes of the two, or a few, most common alleles, and adding alleles.  

 

IX. Application to population and patient data sets 

 

 A. Introduction 

Many lines of evidence indicate that HLA variation is shaped by natural selection and that some 

form of balancing selection is operating on the classical HLA genes, except for DPB1 (which 

nonetheless may still be selected). Some studies have observed deviations from HWP that appear 

to be due to selection on HLA genes, ruling out typing errors, non-random mating etc. (reviewed 

in Meyer and Thomson 2000, also see Black and Salzano 1981; Markow et al. 1993; Chen et al. 

1999). One trend observed in HLA data is that isolated populations tend to show more deviation 

from HWP. Selection explanations are possible, but also Hedrick (1990) has pointed out that the 

lower genetic diversity of isolated populations makes tests of HWP more powerful. 

 Nonetheless, genotyping errors are always the first possibility to consider in quality 

control (QC) of HLA, and other, data. For HLA genotyping, which often involves a series of 

probes and primers being applied in sequence to progressively resolve an allele, it is possible 

that, for example, a probe which is critical in resolving an allele may be omitted, or not 

functioning as expected, leading to an incorrect allele assignment. Bugawan et al. (1999) 

observed significant excess over HWP for the allele A*3401 in populations from Papua New 

Guinea. These deviations resulted from a single base-pair mismatch between a PCR primer and 

the A*3401 allele, so that the A*3401 allele was not detected in these populations. After 

previously reported homozygous samples in these populations were re-typed using a second 

method to avoid this issue, the data were then in HWP. 

 

 B. Microsatellite data      

Microsatellite polymorphisms are commonly used markers in genetic analyses for both disease 

and population genetic studies. While microsatellites provide an abundant and cost effective 

source of genetic markers, there are issues regarding microsatellite typing that need to be 

considered in downstream analyses. One such issue is the preferential amplification of shorter 

fragment sizes compared to larger sizes. When the difference in amplification is large it can be 

difficult to distinguish the longer allele from background noise resulting in an overrepresentation 

of homozygotes for the shorter allele(s) (Demers et al. 1995). This leads to a condition referred 

to as extreme preferential amplification (EPA). Another related issue in microsatellite 

genotyping is that of allele dropout (Rodriguez et al. 2001). In this situation a specific allele does 
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not amplify (unrelated to allele length) possibly due to low quality or low concentration template 

DNA, or to variation in the sequence where PCR primers anneal. As with EPA, allele dropout 

can result in an artificial increase of specific homozygous genotypes. Overall deviation from 

HWP, followed by an examination of patterns of deviations for individual homozygotes and 

heterozygotes can provide insight into the possibility of EPA and/or allele dropout. When 

detected, these issues can often be resolved by retyping with a modified PCR process. 

 Chen et al. (2005) reported on an example of EPA with the MogCA microsatellite in a 

sample of 47 unrelated CEPH individuals. We give an additional example here from a sample of 

48 Mixe individuals (Hollenback et al. 2001). The Mixe, a native American group from Mexico, 

were sampled from the mountains east of the Oaxacan Valley. Seven different MogCA alleles 

were found in this sample. A significant overall test of HWP along with past experience with this 

marker suggested possible preferential amplification problems. A modified PCR protocol, 

designed to compensate for preferential amplification, was used to retype this sample. The table 

below provides additional detail regarding the pattern of deviation from HWP for individual 

homozygotes (before retyping) that led to identification and resolution of problems from EPA.  

Table IX.1:  HWP testing of individual homozygotes to identify EPA problems with 

microsatellite typing 

Mixe data set 

 Before Retyping After Retyping 

Homozygote obs. exp. Chi-sq p-value obs. exp. Chi-sq p-value 

122/122 3 0.33 25.388 <0.001 0 0.13 0.145 0.71 

132/132 34 27.76 24.478 <0.001 17 16.92 0.002 0.97 

136/136 0 0.02 0.022 0.89 0 0.02 0.022 0.89 

146/146 0 0.02 0.022 0.89 0 0.08 0.091 0.77 

148/148 0 0.05 0.050 0.83 0 0.63 0.804 0.37 

150/150 1 0.26 2.529 0.12 1 1.33 0.120 0.73 

152/152 0 0.01 0.005 0.95 0 0.01 0.005 0.95 

 

 C. Admixed data  

With admixed data, when specific alleles (or haplotypes) can be identified as coming from a 

different population, removal of these individuals from tests of HWP may give a closer fit to 

HWP, e.g., see, Hollenbach et al. (2001). Bone marrow registry data is one source of HLA data 

where there is typically a good deal of admixture, especially in the full registry dataset. Large 

significant deviations from HWP are often seen when working with the entire registry dataset, 

but less significance is found when subsets of the data, based on self identified race and ethnicity 

(SIRE) codes, are analyzed separately. While differences in sample size, and thus power to 
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detect deviations from HWP, are certainly at play here, the difference in frequencies for various 

sets of alleles among the SIRE groups is a major contributing factor. 

 

 D. Type 1 diabetes and HLA DR-DQ  

In disease studies, except for a strictly recessive model, deviation from HWP in a patient 

population may be observed for a causative genetic variant, as well as markers in LD with the 

causative variant (Thomson 1993, 1995a, b, c, Zou and Donner 2006). Models of disease are in 

fact equivalent to selection models: the general population represents the before-selection genetic 

variation, the patient population that after selection (disease in this case) (Valdes and Thomson 

1997). Thus, if the control population is in HWP, a genetic marker should not be removed from 

analyses due solely to lack of fit to HWP in a patient population.  

 Further, the form of deviations from HWP can indicate specific genotype effects on 

disease risk. With type 1 diabetes (T1D), in Caucasian populations, the two most frequent 

haplotypes associated with increased predisposition to disease are DRB1*0301 DQA1*0501 

DQB1*0201 and DRB1*0401 DQA1*0301 DQB1*0302. Abbreviating these as DR3 and DR4, 

the observed genotype counts in patients and the HWP are given in Table IX.1 (data from Erlich 

et al. 2008). The excess of heterozygote DR3/DR4's, reflecting a higher disease risk than for the 

respective homozygote combinations, is highly significant (Chi-sq. = 24.6, p < 000001) and 

consistently seen.  

 

Table IX.2: HLA DR-DQ genotype counts in type 1 diabetes for predisposing DR-DQ 

haplotypes* 

 

    DR3/DR3 DR3/DR4 DR4/DR4 

Observed genotype counts: 46  157  35 

Expected HWP:  65.1  118.8  54.1 

(O - E)       -19.1       38.2    -19.1  

 (O - E)2/E       5.6        12.3     6.7  

  Total chi-square: 24.6, df =1, p < 0.000001 

 

* Data are from the study of Erlich et al. (2008): DR3 denotes the DRB1*0301 DQA1*0501 

DQB1*0201 haplotype, and DR4 the DRB1*0401 DQA1*0301 DQB1*0302 haplotype; these 

are the 2 most common predisposing DR-DQ haplotypes in the study. 

 

 E. HIV-1 and CCR5 32  

The CCR5 gene is a co-receptor for HIV-1, the virus predisposing to AIDS. A variant, CCR5 

32, with a 32 base pair deletion resulting in a frame shift and premature stop codon, has a 

truncated protein product that is not expressed on the cell surface. Individuals homozygous for 

CCR5 32 have nearly complete protection against HIV-1 infection, despite repeated exposures 

(see Martin and Carrington 2002 for review). This gives highly significant deviations from 

HWP, see example (1) of Table IX.2 below. Conversely, in individuals with repeated exposures 
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who are not infected, there is a significant excess of individuals homozygous for CCR5 32, see 

example (2) of Table IX.2. In both cases, most of the contribution to the chi-square statistic 

comes from the homozygous 32/ 32 classes. The deviation is in opposite directions in these 2 

samples; and the test of heterogeneity of the 3 genotypes in the 2 samples is highly significant (p 

< 2.7E-16) (data not shown). Compare these data to those for a random population sample, 

which shows fit to HWP (example (2) of Table II.1). 

 

Table IX.3: CCR5 32 variant and deviations from HW in HIV+ and HIV- samples* 

 

(1) CCR5 32 variant in HIV+ sample: p1 = 0.909, p2 = 0.091 

 Genotypes: A/A A/ 32 32/ 32 

 Observed numbers 1988 440  1 Total: 2,429 

 Expected HWP 2007.0 401.9 20.1 Total: 2,429 

 (O - E)    -19.0   38.1 -19.1 

 (O-E)2/E     0.18     3.61 18.15  

 Total Chi-square = 21.94, df = 1, p < 0.000003 

 

(2) CCR5 32 variant in HIV- sample: p1 = 0.8835, p2 = 0.1165 

 Genotypes: A/A A/ 32 32/ 32 

 Observed numbers 793 174 29 Total: 996 

 Expected HWP 777.5 205.0 13.5 Total: 996 

 (O - E)   15.5   -31.0 15.5 

 (O-E)2/E     0.31     4.68 17.80  

 Total Chi-square = 22.79, df = 1, p < 0.000002 

 

*Data are from Martin and Carrington (2002) 

 

X. Discussion 

 

We have not discussed the literature on using different test statistics for evaluating fit or not to 

HWP (see Rousset and Raymond 1995), especially those that take into account the nature of the 

alternative hypothesis. For example, population structure and selfing can result in heterozygote 

deficiency, and other tests may have more power to detect such deviations than those we have 

discussed. Nonetheless, with alternative test statistics, the conditional distribution under the null 

hypothesis can still be computed using Levene's distribution (see eq. IV.1) (Levene 1949). While 

different test statistics may define different rankings of all possible genotype tables, the 

appropriate p-value in each test is still defined as the sum of probabilities of samples with more 

extreme ranks. Hence, our discussions of exact (complete enumeration) and approximation 
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(resampling) MC and MCMC tests of HWP are relevant to other test statistics, with a simple 

modification of the test statistic to be considered.  

 As mentioned in Section IV, further research will focus on increasing the range of sample 

size (n) and number of alleles (k) for which the overall genotype level exact test can be carried 

out. Strategies for treating rare genotype (and allele) counts requires further research. 

Notwithstanding, we caution interpretation of individual genotype p-values when the expected 

value is <2. Future research will also focus on determining the exact HWE for a given sample, 

i.e., finding the table(s) of possible genotype counts of integer values, whose conditional 

probability is greater than or equal to all the other possible tables of genotype values, and 

therefore whose p-value is 1. In this way we could compare observed values to the true HWE for 

that sample, rather than to expected values based on non-integer values. This approach should be 

particularly useful for data with rare expected genotype counts. 
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Appendix A: Derivation of Hardy-Weinberg proportions (HWP) 

 

A. History 

Mendelian genetics was rediscovered in the early 1900's. The founding principle of population 

genetics—the Hardy-Weinberg law—was derived independently in 1908 by Hardy, an English 

mathematician, and Weinberg, a German physician (Hardy 1908, Weinberg 1908, and for a 

translation see Weinberg 1963). The geneticist Punnett brought to the attention of Hardy a 

remark of Yule (also a geneticist), which criticized the concept of Mendelian inheritance by 

suggesting that if brachydactyly (short fingeredness) was dominant ―in the course of time one 

would expect, in the absence of counteracting factors, to get 3 brachydactylous individuals to 1 

normal.‖ Of course we now understand that Yule was confusing the Mendelian 3:1 ratio in an F1 

cross (Aa x Aa gives 3A-:1aa) with population features. (The notation A- is used with dominant 

traits to denote the dominant phenotype which includes AA and Aa genotypes.) Thus the Hardy-

Weinberg law describes the application of Mendelian principles at the population, as opposed to 

the individual, level. 

 

B. Estimating allele frequencies: the method of gene (allele) counting 

Before proceeding with derivation of the HWP, we need to show how allele frequencies are 

estimated in the specific case where we can test fit to HWP, i.e., when all heterozygotes can be 

distinguished from the homozygous states (e.g., with incomplete dominance or codominance and 

in most situations with molecular typing). Allele frequencies in this case are obtained by the 

method of gene (allele) counting. Strictly speaking this should be referred to as allele counting 

rather than gene counting; the latter term however will be used for consistency with most of the 

literature.   

 In a two allele system with alleles denoted A1 and A2, with respective allele frequencies in 

the sample under study of p1 and p2, the maximum likelihood estimates (MLEs) of these allele 

frequencies are simply those found by counting the numbers of alleles, as would be expected: 

 p1  =  f(A1)  =  f(A1A1)  +  f(A1A2)/2,       (eq. A.1)  

 p2 =  f(A2)  =  f(A1A2)/2  +  f(A2A2), with p1 + p2 = 1,  

where f(A1A1)  is the frequency of homozygous A1A1 individuals, f(A1A2) of heterozygous A1A2 

individuals, etc. Note that no assumption of HWP is required. This is the method of gene 

counting. 

  

Table A.1: Example genotype counts and frequencies 

 

 Genotypes A1A1 A1A2 A2A2 

 Observed numbers 50 40 10 Total:  100 

 Frequencies: 0.50 0.40 0.10 Total: 1.00 

 

 Consider the example in Table III.1. The allele frequencies in this case are: 
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 p1 = 0.5 + (0.4)/2 = 0.7,  p2 = (0.4)/2 + 0.10 = 0.3 (check p1 + p2 = 1).  

Of course these calculations can also be done using the observed numbers of genotypes: 

 A1A1 A1A2 A2A2 

 n11 n12 n22       Total:  n 

 p1 = (2n11 + n12)/2n, and p2 = (n12 + 2 n22)/2n.    (eq. A.2) 

 

C. The variance of the allele frequency estimates 

Denoting by pA1 the true frequency of allele A1 at the population level, the variance of the allele 

frequency estimated by the method of gene counting is pA1 (1 - pA1) / (2n) where n is the sample 

size. An estimate of this variance is obtained using this formula and the estimated allele 

frequency p1:  

 p1 (1 - p1) / (2n).        (eq. A.3) 

The standard deviation (sd) is the square root of the variance. The 95% confidence interval for 

the range of the true allele frequency pA1 is 1.96 times the sd on either side of the estimate. The 

larger the sample size n, the smaller the variance and sd, and theoretically the more accurate the 

estimate of the allele frequency, as one would expect. 

 As above, where ~2 sd on each side of the estimated allele frequency represents the 

approximate 95% confidence interval for the true allele frequency, ~1 sd on both sides of the 

estimated allele frequency is the 68% confidence interval, while ~3 sd corresponds to the 99.7% 

confidence interval. 

 

D. Derivation of Hardy-Weinberg proportions (HWP) 

We consider a parental population with two alleles at the locus of interest, with 

 p1  =  f(A1),  p2  =  f(A2), with p1 + p2 = 1. 

Under the assumptions listed above in Section II.C, to determine the genotype frequencies in the 

offspring we consider the 2x2 table of female and male gametes (assuming equal allele 

frequencies in both sexes), see Table A.1 below, and random union of these gametes to form the 

genotypes in the offspring generation. (We should consider random union of individuals, rather 

than random union of gametes, but in fact the result is the same.)  

 

Table A.2: Random union of male and female gametes resulting in HWP 

 

 female gametes: A1 (p1) A2 (p2) 

  male gametes: A1 (p1) / A1A1 (p1
2
) A1A2 (p1p2) 

  A2 (p2) / A2A1 (p2p1) A2A2 (p2
2
) 

 

The genotype frequencies in the offspring are the HWP:  

 A1A1 - p1
2
, A1A2 - 2p1p2, A2A2 - p2

2
.      

The factor 2 arises in the term for heterozygotes as either the father can supply the A1 allele and 

the mother the A2 allele, or vice versa. Note here that with the assumption of an infinite 
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population, the genotype frequencies are exactly determined by the products of the allele 

frequencies.  

 Also, in particular, note that in the offspring generation, by gene (allele) counting: 

 f(A1)  =  p1, f(A2)  =  p2. 

Thus, allele frequencies do not change if the conditions listed in Section II.C are met, and 

genotype frequencies (proportions) can be predicted from allele frequencies. As stated above, to 

conduct a test of HWP, we must be able to distinguish all heterozygote and homozygote 

individuals. 

 

E. Evolutionary implications of HW 

The importance of the Hardy-Weinberg law from the point of view of population genetics and 

evolution is that if there are no counteracting forces, then the allele frequencies do not change in 

a population. In other words, under a Mendelian system, the genetic variation in a population 

tends to be maintained. This is in contrast to the concept of ‘blending inheritance’ (a common 

belief at the time of Darwin), whereby genetic variation decreases each new generation. 

 Since all populations are in fact finite there is an inevitable change in the allele 

frequencies, in both the short-term and long-term evolution of populations, but from the point of 

view of testing for HWP this can be ignored. 

 

F. Two extreme examples showing fit and lack of fit to HWP  

In a test of HWP, allele frequencies are estimated and observed genotype counts are compared to 

those expected under HWP. The following two examples (Table AI.3) have the same sample size  

(n = 100) and the same allele frequencies (p1  = 0.6, and p2 = 0.4), and hence the same HWP; but 

the observed genotype frequencies in the two examples are very different, and respectively 

illustrate fit to HWP (example 1) and lack of fit to HWP (example 2). (In this case the examples 

are extreme and the results obvious; the actual statistical test is given below in Table B.1.) 

 

Table A.3: Two examples with the same allele frequencies showing close fit to HWP and 

large deviation from HWP 

 

(1) Example with close fit to HWP: p1 = 0.6, p2 = 0.4 

 

 Genotypes:   C1C1 C1C2 C2C2 

 Observed: counts (frequencies) 35 (0.35) 50 (0.50) 15 (0.15)  

 Expected HWP: counts (frequencies) 36 (0.36) 48 (0.48) 16 (0.16)  

 

(2) Example with large deviation from HWP: p1 = 0.6, p2 = 0.4 

Genotypes:   E1E1 E1E2 E2E2 

 Observed: counts (frequencies) 56 (0.56) 8 (0.08) 36 (0.36)  

 Expected HWP: counts (frequencies) 36 (0.36) 48 (0.48) 16 (0.16)  
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G. Hardy-Weinberg equilibrium for an X-linked trait  

Females have two X (sex) chromosomes, while males have one X and one Y chromosome. The 

Y chromosome carries very few genes, so males are effectively haploid for X-linked traits. The 

Hardy-Weinberg expectations for an X-linked trait are the same as for an autosomal locus for 

females, while for males they are simply the allele frequencies. For example, for a locus with 

two alleles denoted A1 and A2 with allele frequencies p1 and p2 (p1 + p2 = 1), as above, the 

genotypes and their frequencies are: 

 females: A1A1 - p1
2
, A1A2 - 2p1p2, A2A2 - p2

2
, males: A1 - p1, A2 - p2. 

If the male and female allele frequencies are not equal, HWP in the females will be reached 

asymptotically. Note that no test of HWP can be performed in the males. 

 

H. Estimation of allele frequency and carrier frequency for a recessive trait 

Many traits of interest are neither codominant nor incompletely dominant, but we may be 

interested in estimating the allele frequencies in this case, as well as the proportion of individuals 

heterozygous for a recessive trait (called carriers). To do this, we often assume HWP in the 

population. Here we will use the standard notation for the two-allele case of denoting the alleles 

by A and a, and the genotypes by AA, Aa, and aa; with capital and lower case letters used to 

denote dominant versus recessive alleles respectively. We denote the allele frequencies by p and 

q (p + q = 1), and the HWP are AA - p
2
, Aa - 2pq, aa - q

2
. 

 In this case we cannot distinguish the heterozygotes (Aa) from the homozygotes (AA) and 

hence cannot estimate the allele frequencies by gene counting. Instead, using the fact that the 

expected frequency of homozygotes for the recessive trait under HWP is f(aa) = q2, we estimate 

the allele frequency of the recessive trait by  

 q = f(a)  =  [f(aa)]1/2.        (eq. A.4) 

Note that we cannot test whether the population is in HWP since we have already assumed that it 

is so in order to obtain our estimate of the allele frequencies. 

 We can also use the assumption of HWP to estimate how many carriers for the trait 

(heterozygotes) there are in the population, i.e., we estimate 2pq, using our estimate of q (and 

hence p = 1 - q), above. For rare recessive autosomal traits, the majority of the disease 

predisposing a alleles are found in heterozygous unaffected carriers (frequency ~2q, compared to 

a frequency of affected individuals of q
2
. See examples (2) and (3) in Table II.1 (note that the 

heterozygote frequency was known from molecular typing in these examples). Further, most 

affected individuals result from heterozygote by heterozygote matings. Examples of carrier 

frequencies in three rare autosomal recessive traits are given for illustration. 

 For X-linked recessive traits there are always more affected males (q) than females (q2); 

if the trait is rare, e.g., hemophilia, the vast majority of affected individuals are males. Likewise, 

for X-linked dominant traits there are always more affected females (1-q2) than males (p); for 

rare traits, there are approximately twice as many affected females (2p) as males (p). 
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Cystic fibrosis: Characterized by malfunction of the pancreas and other glands, cystic 

fibrosis is one of the most frequent recessive diseases among Europeans and people of 

European descent. The incidence of this condition is about 1/2,500 individuals, i.e., q2 = 

0.0004, giving an estimate of q = 0.02, with a corresponding estimate for carriers of ~4%. 

Sickle cell anemia: Sickle cell anemia is the most common recessive disease among African 

Americans, with an incidence of approximately 1/400 individuals. In this case, q2 = 

0.0025, the estimate of q = 0.05, and the estimate of carriers is ~9.5% (heterozygous 

carriers of the disease show no ill effects except in conditions of oxygen stress). In parts 

of West Africa about 1/100 individuals have sickle cell anemia, and ~18% are carriers. 

The high frequency of the allele is due to an advantage to heterozygous individuals in 

malarial environments. 

Tay Sachs: Tay Sachs disease is a tragic recessive illness that results from the absence of the 

hexosaminidase A enzyme and leads to death by the age of 3 or 4 years. Among 

descendants of Ashkenazi Jews who settled in Eastern and Central Europe this disease 

occurs with an incidence of ~ 1/4,000; therefore q2 = 0.00025, the estimate of q = 0.016, 

and the estimate of heterozygous carriers is ~3.2%. Carrier status screening is possible. If 

parents are both carriers then prenatal diagnosis can be performed. Among the non-

Jewish population of North America, the incidence of Tay Sachs is about 1 in 500,000 

births, with q = 0.0014. 
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Appendix B: The Chi-square test of HWP 

 

A. Calculating the Chi-square test statistic 

Two examples are given in Table B.1 of the calculation of (O-E)2/E, where O is the observed 

genotype count and E is the expected count under HWP. For the moment we assume that E > 5 

for all genotypes. Example (1) has genotype frequencies close to HWP, while example (2) has 

genotype frequencies with a large deviation from HWP. In both cases the df = 1, and the 

respective p-values are ns (not significant at 5%) and p < 0.000001 (discussed below). 

 

Table B.1: Two examples of calculating the Chi-square test statistic for overall fit to HWP* 

 

(1) Example with close fit to HWP: p1 = 0.6, p2 = 0.4 

Genotypes:   C1C1 C1C2 C2C2 

Observed counts (O) 35  50 15 Total: 100  

Expected HWP counts (E) 36  48 16 Total: 100 

(O - E)  -1  2  -1 

(O-E)2/E 0.028 0.083 0.063 Total Chi-square: 0.174 

 

 (2) Example with large deviation from HWP: p1 = 0.6, p2 = 0.4 

Genotypes:   C1C1 C1C2 C2C2 

Observed counts (O) 56  8 36 Total: 100  

Expected HWP counts (E) 36  48 16 Total: 100 

(O - E) 20 -40 20 

(O-E)2/E 11.1 33.3 25.0 Total Chi-square: 69.4 

 

* These data are the same as in Table A.3. 

  

B. Accepting or rejecting the null hypothesis 

The overall Chi-square test statistic value is compared to theoretical Chi-square values based on 

df and the type 1 probability p-values under the null hypothesis (see Table B.2, and for a more 

detailed Table see http://www.math.unb.ca/~knight/utility/chitable.html). If the test statistic 

value is less than that given under the heading Probability (p-value) of 0.05 for the specified df, 

e.g., 3.84 for df =1, then the null hypothesis is accepted (example (1) of Table B.1, where the 

overall Chi-square test statistic is 0.174). This does not mean that the null hypothesis is 

necessarily correct; rather, given the observed data there is no evidence to reject the null 

hypothesis. 

 

Table B.2: Theoretical Chi-square values with different probabilities 

 

 Degrees  Probability (p-value)______________________                             
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 Of Freedom 0.05* 0.01** 0.001*** 0.0001**** 

 1   3.84  6.64 10.8 15.0 

 2   5.99   9.21 13.8 18.5 

 3   7.82 11.35 16.3 21.0 

 4   9.49 13.28 18.5 23.5 

 5 11.07 15.09 20.5 25.8 

 

 If the observed test statistic value is greater than that given under p = 0.05, but less than 

that given under p = 0.01, for the specified df, then we reject the null hypothesis at the p < 0.05 

value. This means that the probability that the observed data were generated under the null 

hypothesis is low, namely less than 5%. Note that the type 1 error level listed (p < 0.05 in this 

case) gives the probability that we have falsely rejected the null hypothesis, i.e., there is a 5% 

chance under the null hypothesis of getting the observed, or more extreme, values (i.e. >3.84 and 

<6.4). However, we must balance the type 1 error against our ability to detect deviations from 

the null hypothesis. 

 If our test statistic value falls between the p = 0.01 and the p= 0.001 values for the 

specified df (i.e., between 6.64 and 10.83 for df = 1), then we would reject the null hypothesis at 

the p < 0.01 value and would have more confidence in this rejection; in this case, there is only a 

1% chance that a test statistic value greater than 6.64 would be generated by chance under the 

null hypothesis. Similarly, if the observed test statistic is greater than 10.83 with df = 1, we reject 

the null hypothesis at the p < 0.001 value. For example (2) of Table B.1, where the overall Chi-

square test statistic is 69.4, we reject the null hypothesis at the p < 0.0001 value, using Table B.2.  

 More detailed p-values are also available from the internet (e.g., 

http://faculty.vassar.edu/lowry/tabs.html#cs, http://www.danielsoper.com/statcalc/calc11.aspx). 

For example (2) of Table B.1 we can actually reject the null hypothesis with p < 0.000001, i.e., 

we can be almost absolutely certain that the observed values deviate from HWP. In this case we 

would need to investigate the possible reasons for this large deviation from HWP (deficiency of 

heterozygotes, excess homozygotes) such as typing errors, non-random mating (e.g., a self-

fertilizing plant), etc. 

 In Table B.3 below, we consider a series of examples extending those in Table B.1, all 

with artificially constructed genotype counts illustrating varying degrees of fit and lack of fit to 

HWP. Next to the observed numbers in each case the (O - E) values are given in parentheses. 

The df = 1 in all examples (see below). As discussed above, for a Chi-square distribution with 1 

df, the cut-off points, i.e., rejection of the null hypothesis of fit to HWP are 3.84 (5%), 6.64 (1%), 

10.83 (0.1%), and 15.0 (0.01%), as given in Table VI.2. We also often put *'s after the p-value,  

 * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001,  

since these are easier to spot visually than the actual p-values. 

 

Table B.3: Hypothetical examples showing varying degrees of departure from HWP
#
 

 

 A1A1 A1A2 A2A2 Chi-square test statistic 

 32 (-4)  56 (8)  12 (-4)  2.78 

 31 (-5)  58 (10)  11 (-5)  4.34, p < 0.05* 
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 29 (-7)  62 (14)   9 (-7)  8.51, p < 0.01** 

 27 (-9)  66 (18)    7 (-9)  14.06, p < 0.001*** 

 26 (-10) 68 (20)   6 (-10)  17.36, p < 0.0001**** 

  
#
 The observed genotype counts (O) are listed, with the (O - E) values in parentheses, in all 

examples f(A1) =  p1 = 0.6, f(A2) =  p2 = 0.4, and the HWP expected counts in all cases are 36, 48, 

and 16. The Chi-square test statistic is the sum of the (O-E)2/E values, and the df = 1 in all cases 

(see below). 

 

C. Determining the degrees of freedom (df) 

When the expected (E) values under the null hypothesis are independent of any features of the 

observed data, then the df for a particular data set is given by the number of genotype classes 

considered minus 1 (since the total number of genotypes is a fixed number) (as above, for the 

moment we are only considering examples with all E > 5). Since the observed data are used in 

calculations to determine the expected values when testing for HWP, the df is as above (number 

of genotype classes - 1) and then minus the number of independent parameters estimated.  

 For a two-allele system, only 1 independent parameter is estimated. If we estimate the 

allele frequency p1 then we know the estimate of p2, because p1 + p2 = 1. The number of 

genotype classes is 3, hence df = 3 -1 -1 = 1 as in the examples in Tables B.1 and B.3. 

 For a k-allele system, k - 1 independent allele frequencies are estimated (if we have k - 1 

allele frequency estimates, then we know the estimate for the kth allele): the number of different 

genotype classes is k (homozygotes) + k(k-1)/2 (heterozygotes) = k(k+1)/2, and thus, df = 

k(k+1)/2 - 1 - (k-1) = k(k-1)/2. In this case: 

 

 
( 1) 2

2 2

1

( )

k k

H W i i i

i

X O E E        (eq. B.1) 

 

where 
i

O  is the observed number of individuals with the ith genotype, 
i

E  is the expected 

genotype count under HWP. Thus, when 5
i

E  for each genotype class, 2

H W
X  has a Chi-square 

distribution with df=k(k-1)/2.  

 

D.  Lumping genotype classes when expected values are < 5 

When Ei < 5 for a genotype class, the observed and expected counts of all such genotype classes 

must be combined, and the df is adjusted appropriately. If the combined Ei is still <5, these 

combined classes are then combined with the genotype class with the smallest value of 

5
i

E (unless there is a biological reason for a different lumping scheme); i.e., genotype classes 

must be combined until all classes have an expected value 5
i

E , and the Chi-square test of 

goodness of fit is performed on the resulting data set. Note that there may be insufficient df to 

permit statistical testing of this combined dataset. For example, if one genotype in a two-allele 

system has an Ei <5, and therefore, is combined with another genotype class, there will be no df 
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for a statistical test. However, the exact (complete enumeration) and approximation (resampling) 

tests (described below) can be used in these cases without combining classes.  

 To illustrate the calculation for df in these combined datasets, we consider a hypothetical 

case where there are four alleles, denoted A1, A2, A3, and A4. Suppose 2 of these alleles, A3 and A4, 

are rare, so that after combining in order that 5
i

E , there are 4 genotypic classes, namely: A1A1, 

A1A2, A2A2, and ―combined‖ (the remaining genotypes). Note that the alleles A3 and A4 are only 

found in the ―combined‖ category; when we calculate the df for the reduced data set it is valid to 

deduct only 2 for the number of independent allele frequencies estimated, giving df = 4-1-2 = 1. 

Note that if we had deducted the 3 independent allele frequencies, there would be insufficient df 

remaining to test fit to HWP. 

 The rules described here, including for the df calculation, apply to any combined set of 

genotypes. See below for two examples with three alleles that require combining.  

 

E. Two examples of Chi-square testing of HWP that require lumping 

We consider two examples that require lumping, due to Ei < 5 values, in a three-allele 

codominant system (Table B.1). The allele frequencies are the same in both examples, and 

example (1) shows a close fit to HWP, while example (2) has a large deviation from HWP.  

 

 

Table B.4: Two examples of lumping classes in testing of HWP 
 

(1) Example with close fit to HWP: p1 = 0.5, p2 = 0.3, p3 = 0.2 

 

  A1A1 A1A2 A1A3 A2A2 A2A3 A3A3 

  

 O 26 29 19 10 11  5 Total: 100 

 E 25 30 20  9 12  4 Total: 100 

 O 26 29 19 15 11 - Total: 100 

 E 25 30 20 13 12 - Total: 100 

 (O - E)  1  -1  -1  2  -1 -  

 (O-E)2/E 0.0400 0.0333 0.0500 0.3077 0.0833 - Total: 0.5143, ns 

  

 

 (2) Example with large deviation from HWP: p1 = 0.5, p2 = 0.3, p3 = 0.2 

 

  A1A1 A1A2 A1A3 A2A2 A2A3 A3A3 

 O 33 20 14 16  8  9 Total: 100 

 E 25 30 20  9 12  4 Total: 100 

 O 33 20 14 25  8 - Total: 100 

 E 25 30 20 13 12 - Total: 100 

 (O - E)  8 -10  -6 12  -4 -  

 (O-E)2/E 2.56 3.33 1.80 11.08 1.33 - Total: 20.10**** 
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 Since the expected value for the A3A3 genotype is < 5 in both examples, this category 

must be combined with another category, in this case A2A2 (the category with the next smallest 

expected value). Now the expected value for the new combined class of A2A2 and A3A3 is > 5, 

and the standard Chi-square test can be performed. The df = 2 in both cases, there are 5 genotype 

classes after lumping with 2 independent allele frequency estimates, so df = 5 - 1 - 2 = 3. The 

data in example (2) deviate significantly from HWP with p < 0.0001 (Table VI.2). Note in this 

case that all the homozygotes have an observed excess frequency over HWP expectations, while 

all the heterozygote classes have an observed reduced frequency compared to HWP expectations, 

and this may give a clue to typing errors or admixture or inbreeding effects. 
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Appendix C: Malaria and sickle cell anemia and deviations from HWP 

  

Malaria provides a strong selective pressure, and has led to polymorphism of a number of genes in 

humans. A well-known example, related to Plasmodium falciparum, involves variants at the 

hemoglobin  gene, notably Hb-S (homozygotes have sickle cell anemia), with heterozygote 

advantage in malarial environments. Individuals with sickle cell trait (AS heterozygotes) are more 

resistant to malaria than individuals who are homozygous AA; SS individuals are also more 

resistant to malaria than AA individuals, but they have sickle cell anemia which drastically reduces 

their fitness. An illustrative example of genotype frequencies for newborns and adults in a malarial 

environment is given in Table C.1 

 

Table C.1: Sickle cell anemia genotype frequencies in a malarial environment 

 

(1) Among newborns: f(A) = p1 = 0.8820, f(S) =  p2 = 0.1220: 

 Genotypes: AA AS SS 

  Newborns (O) 780  204 16 Total: 1,000 

  Newborns (E) 777.9  208.2 13.9 Total: 1,000 

  (O - E)     2.1      - 4.2   2.1  

  (O - E)2/E     0.006      0.085   0.317  

  Total chi-square: 0.408, df =1, ns 

 

(2) Among adults: f(A) = p1 = 0.8835, f(S) = p2 = 0.1165. 

 Genotypes: AA AS SS 

  Adults (O)  769  229  2 Total: 1,000 

  Adults (E)  780.6 205.9 13.5 Total: 1,000 

  (O - E)     -11.6   23.1  -11.5  

  (O - E)2/E     0.17 2.59 9.80  

 Total chi-square: 12.56, df =1, p < 0.0004*** 

 

The adult sample shows very significant deviation from HWP, while the newborn sample does not. 

This reflects the fact that at birth (pre-selection) the genotype frequencies are expected to be in 

HWP, whereas after selection has acted (malaria and sickle-cell anemia), the adult population 

shows significant deviation from HWP. The fact that the allele frequencies are very similar in 

newborns and adults may indicate that the population is close to equilibrium. 

 

 


